
Dashboards Documentation
Release 0.6

Project Jupyter

April 05, 2017

User Documentation

1 Getting started 3
1.1 Prerequisites . 3
1.2 Installing and Enabling . 3
1.3 Disabling and Uninstalling . 3
1.4 Legacy Notes . 4

2 Creating dashboard layouts 5

3 Understanding the use case 11

4 Developer tasks 13

5 Maintainer tasks 15
5.1 Build a package . 15
5.2 Make a release . 15

6 Dashboard metadata and rendering 17
6.1 Versioning . 17
6.2 Notebook Fields . 17
6.3 Rendering . 18
6.4 JSON Schema . 21

7 Summary of changes 27
7.1 0.7 . 27
7.2 0.6 . 27
7.3 0.5 . 27
7.4 0.4 . 28
7.5 0.3 . 29
7.6 0.2 . 29
7.7 0.1 . 29

8 Indices and tables 31

i

ii

Dashboards Documentation, Release 0.6

The dashboards layout extension is an add-on for Jupyter Notebook. It lets you arrange your notebook outputs (text,
plots, widgets, ...) in grid- or report-like layouts. It saves information about your layouts in your notebook document.
Other people with the extension can open your notebook and view your layouts.

For a sample of what’s possible with the dashboard layout extension, have a look at the demo dashboard-notebooks in
the project repository.

The extension can be used in combination with the incubating [jupyter-
incubator/dashboards_bundlers](https://github.com/jupyter-incubator/dashboards_bundlers) and [jupyter-
incubator/dashboards_server](https://github.com/jupyter-incubator/dashboards_server) projects.

User Documentation 1

https://github.com/jupyter/dashboards/tree/master/etc/notebooks
https://github.com/jupyter/dashboards/tree/master/etc/notebooks
https://github.com/jupyter-incubator/dashboards_bundlers
https://github.com/jupyter-incubator/dashboards_server

Dashboards Documentation, Release 0.6

2 User Documentation

CHAPTER 1

Getting started

This document describes some of the basics of installing and enabling the dashboards layout extension.

Prerequisites

• Jupyter Notebook >=4.2 running on Python 3.x or Python 2.7.x

• Edge, Chrome, Firefox, or Safari

Installing and Enabling

The following steps install the extension package using pip and enable the extension in the active Python environment.

pip install jupyter_dashboards
jupyter dashboards quick-setup --sys-prefix

Run jupyter dashboards quick-setup --help for other options. Note that the second command is a
shortcut for the following:

jupyter nbextension install --py jupyter_dashboards --sys-prefix
jupyter nbextension enable --py jupyter_dashboards --sys-prefix

Alternatively, the following command both installs and enables the package using conda.

conda install jupyter_dashboards -c conda-forge

Disabling and Uninstalling

The following steps deactivate the extension in the active Python environment and uninstall the package using pip.

jupyter dashboards quick-remove --sys-prefix
pip uninstall jupyter_dashboards

Note that the first command is a shortcut for the following:

jupyter nbextension disable --py jupyter_dashboards --sys-prefix
jupyter nbextension uninstall --py jupyter_dashboards --sys-prefix

3

Dashboards Documentation, Release 0.6

The following command deactivates and uninstalls the package if it was installed using conda.

conda remove jupyter_dashboards

Legacy Notes

If you installed the dashboard extension against Jupyter notebook 4.0 or 4.1, you may need to manually remove this
line from your jupyter_notebook_config.py file when uninstalling or upgrading:

[YOUR_JUPYTER_CONFIG_PATH]/jupyter_notebook_config.py
c.NotebookApp.server_extensions.append('urth.dashboard.nbexts')

4 Chapter 1. Getting started

CHAPTER 2

Creating dashboard layouts

This page provides a brief walkthrough of using the dashboard extension. The extension provides additional, built-in
help about all of the dashboard features. The steps below include instructions on how to access the help.

Create a new Jupyter notebook document in a language of your choice. Insert markdown and code into the notebook.
Run the cells to generate text, plots, widgets, etc.

5

Dashboards Documentation, Release 0.6

Select either Grid Layout or Report Layout in the Dashboard View toolbar. Alternatively, use the options in the View
-> Dashboard Layout menu.

In grid layout, drag handles to resize and move cells in the grid. Click the buttons to add or remove cells in the layout.
Use the Cell -> Dashboard menu items for batch operations.

6 Chapter 2. Creating dashboard layouts

Dashboards Documentation, Release 0.6

In report layout, click buttons to show or hide cells.

7

Dashboards Documentation, Release 0.6

Click More Info at the top of the layout view for help with additional features.

Click the Dashboard Preview button in the toolbar to view and interact with the cells without the authoring tools.
Alternatively, click the Dashboard Preview menu item in the View menu.

8 Chapter 2. Creating dashboard layouts

Dashboards Documentation, Release 0.6

Click the Notebook View button in the toolbar to return to the notebook editor. Alternatively, click the Notebook menu
item in the View menu.

9

Dashboards Documentation, Release 0.6

10 Chapter 2. Creating dashboard layouts

CHAPTER 3

Understanding the use case

The dashboard layout extension is part of a larger Jupyter Dashboards effort meant to address the following problem:

Alice is a Jupyter Notebook user. Alice prototypes data access, modeling, plotting, interactivity, etc. in a
notebook. Now Alice needs to deliver a dynamic dashboard for non-notebook users. Today, Alice must
step outside Jupyter Notebook and build a separate web application. Alice cannot directly transform her
notebook into a secure, standalone dashboard application.

The solution implemented by the Dashboards effort is the following:

1. Alice authors a notebook document using Jupyter Notebook. She adds visualizations and interactive widgets.

2. Alice arranges her notebook cells in a grid- or report-like dashboard layout.

3. Alice one-click deploys her notebook and associated assets to a Jupyter Dashboards server.

4. Bob visits the dashboards server and interacts with Alice’s notebook-turned-dashboard application.

5. Alice updates her notebook with new features and redeploys it to the dashboards server.

The ecosystem of widget and visualization libraries for Jupyter Notebook covers step (1). The dashboard layout
extension handles step (2). The other incubating projects in the Jupyter Dashboards effort, namely the dashboard

11

https://github.com/jupyter-incubator/dashboards_bundlers
https://github.com/jupyter-incubator/dashboards_bundlers

Dashboards Documentation, Release 0.6

bundlers and dashboard server attempt to handle the remaining steps (3) through (5).

12 Chapter 3. Understanding the use case

https://github.com/jupyter-incubator/dashboards_bundlers
https://github.com/jupyter-incubator/dashboards_bundlers
https://github.com/jupyter-incubator/dashboards_server

CHAPTER 4

Developer tasks

This document includes instructions development environment for the dashboards layout extension. It also includes
common steps in the developer workflow such as running tests, building docs, etc.

Install conda on your system. Then clone this repository in a local directory.

make a directory under ~ to put source
mkdir -p ~/projects
cd !$

clone this repo
git clone https://github.com/jupyter/dashboards.git

Create a conda environment with the necessary dev and test dependencies.

cd dashboards
make env

Install the necessary JS dependencies. Re-run this command any time your bower.json or package.json
changes.

make js

Run a notebook server with the dashboard extension enabled.

make notebook

Travis runs a small set of UI smoke tests using Selenium on Sauce Labs on every merge to the git master branch. You
can run these tests locally if you install Selenium.

install selenium first, e.g., on OSX
brew install selenium-server-standalone
run the smoke tests
make test

ReadTheDocs builds the project documentation on every merge to git master. You can build the documentation locally
as well.

make docs

Run make help to get a full list of development tasks.

13

https://conda.io/miniconda.html

Dashboards Documentation, Release 0.6

14 Chapter 4. Developer tasks

CHAPTER 5

Maintainer tasks

This document includes instructions for typical maintainer tasks.

Build a package

To build a source tarball in dist/, run the following:

make sdist

Make a release

To start a new major/minor branch for its first release (e.g., 0.3.0):

git checkout master
git pull origin master
git checkout -b 0.3.x

git checkout master

edit _version.py to bump to next major/minor (e.g., 0.4.0.dev)
then ...

git add .
git commit -m 'Bump to 0.4.0.dev'
git push origin master

To make a patch release on a major/minor branch (e.g., 0.3.0):

cherry-pick commits into the branch from master
if there's multiple comments on master, do this ...
git checkout master
git checkout -b tmp-backport-0.3.x
git rebase -i 0.3.x
delete any version bumps or other commits you don't want
in the stable release branch from master
git checkout 0.3.x
git merge tmp-backport-0.3.x
git branch -D tmp-backport-0.3.x

if there's only one or two commits, just use cherry-pick

15

Dashboards Documentation, Release 0.6

then ...
git checkout -b 0.3.x

edit _version.py to remove the trailing 'dev' token
then ...

git add .
git commit -m 'Release 0.3.0'
git tag 0.3.0

do the release
make release

edit _version.py to bump to 0.3.1.dev
then ...

git add .
git commit -m 'Bump to 0.3.1.dev'

git push origin 0.3.x
git push origin 0.3.0

16 Chapter 5. Maintainer tasks

CHAPTER 6

Dashboard metadata and rendering

This page documents:

1. The fields written to notebook documents (.ipynb files) by the jupyter/dashboards extension

2. The interpretation of these fields in jupyter/dashboards and jupyter-incubator/dashboards_server
to render a notebook in a dashboard layout.

Versioning

The dashboard metadata specification is versioned independently of the packages that use it. The current version of
the specification is v1.

Prior to the v1 specification, the dashboard incubator projects read and wrote a legacy v0 metadata format. The details
of this older spec appear on the dashboards wiki for historical purposes.

Notebook Fields

The following snippet of JSON shows the fields read and written by the dashboard projects. A more formal JSON
schema appears later in this document.

{
"metadata": { // notebook level metadata
"extensions": { // to avoid future notebook conflicts

"jupyter_dashboards" : { // pypi package name
"version": 1, // spec version
"activeView": "<str:views key>", // initial view to render
"views": {
"<str: tool defined ID 1>": { // tool-assigned, unique layout ID

"name": "<str>", // user-assigned, unique human readable name
"type": "grid", // layout algorithm to use (grid in this example view)
"cellMargin": <uint:10>, // margin between cells in pixels
"cellHeight": <uint:20>, // height in pixels of a logical row
"numColumns": <uint:12> // total number of logical columns

},
"<str: tool defined ID 2>": { // tool-assigned, unique layout ID

"name": "<str>", // user-assigned, unique human readable name
"type": "report" // layout algorithm to use (report in this example view)

}
}

17

https://github.com/jupyter/dashboards/wiki/Dashboard-Metadata-and-Rendering#spec-v0

Dashboards Documentation, Release 0.6

}
}

},
"cells": [
{

"metadata": {
"extensions": {
"jupyter_dashboards": {
"version": 1, // spec version
"views": {
"<str: tool defined ID 1>": { // if present, means the grid layout algorithm has processed this cell
"hidden": <bool:false>, // if cell output+widget are visible in the layout
"row": <uint:0>, // logical row position
"col": <uint:0>, // logical column position
"width": <uint:6>, // logical width
"height": <uint:2> // logical height

},
"<str: tool defined ID 2>": { // if present, means the report layout algorithm has processed this cell
"hidden": <bool:false> // if cell output+widget are visible in the layout

}
}

}
}

}
}

]
}

Rendering

A dashboard renderer is responsible for reading the notebook document, executing cell inputs, and placing cell outputs
in a dashboard view. Cell outputs include anything that Jupyter Notebook 4.x renders in the cell output subarea or cell
widget subarea in response to kernel messages or client-side events. A dashboard view defines how cell outputs are
positioned and sized with respect to one another according to a particular layout algorithm.

The notebook can have multiple dashboard view associated with it in the
metadata.extensions.jupyter_dashboards.views field. This specification defines two view
types, report and grid, that dictate how a renderer positions and sizes cells on the page.

Report View

The report type stacks cell outputs top-to-bottom, hiding cells marked as hidden. The height of each cell varies
automatically to contain its content. The width of all cells is equivalent and set by the renderer.

18 Chapter 6. Dashboard metadata and rendering

Dashboards Documentation, Release 0.6

To display a metadata.jupyter_dashboards.views[view_id]with type report properly, the renderer:

• Must execute cell inputs in the order defined by the notebook cells array.

• Must not render nor reserve display space for cells that have metadata.extensions.jupyter_dashboards.views[<view
id>].hidden=true.

• Must arrange cell outputs top-to-bottom in order of execution (i.e., stacked vertically).

• Must space cell outputs vertically so that they do overlap at any time (e.g., a plot in the top-most cell should not
overlap Markdown in the next down cell nor any cell below that).

• Should allow interactive widgets in cell outputs to render content that does overlap other cells (e.g., popups).

• Should wrap cell outputs that have variable length content (e.g., text) at a renderer-determined width (e.g.,

6.3. Rendering 19

Dashboards Documentation, Release 0.6

browser width, responsive container element, fixed width).

• Should include a fixed amount of vertical whitespace between cell outputs.

Grid View

The grid type positions cells in a grid with infinitely many rows and a fixed number of columns. The width and
height of each cell is expressed in terms of these rows and columns. The physical height of each row is a fixed value
while the width of each column is set by the renderer.

Consider a view with tool-assigned ID view_id and type grid defined in the notebook-level metadata (i.e.,
metadata.extensions.jupyter_dashboards.views[view_id]). Let view be a reference to this
notebook-level object. Let cell_view be a reference to any cell-level object keyed by the same view_id. To
properly display this view, the renderer:

20 Chapter 6. Dashboard metadata and rendering

Dashboards Documentation, Release 0.6

• Must execute cell inputs in the order defined by the notebook cells array.

• Must not render nor reserve display space for cells that have cell_view.hidden=true.

• Must define a logical grid with an unbounded number of rows and view.numColumns columns per row.

• Must define a screen viewport with infinite height and a renderer-determined width (e.g., browser width, respon-
sive container element, fixed width).

• Must map the grid origin (row zero, column zero) to the top left corner of the viewport.

• Must allocate view.cellHeight pixels of space in the viewport to each grid row.

• Must allocate a fixed, renderer-determined number of pixels in the viewport to each grid column.

• Must place a cell’s outputs in the cell_view.row and cell_view.col slot in the grid.

• Must allocate cell_view.width columns and cell_view.height rows of space in the grid for a cell’s
output.

• Must separate each slot in the grid on the screen by view.cellMargin pixels.

• May clip, scale, wrap, or let overflow cell output that is bigger than its allocated space on the screen.

Other Cases

When presented with a document having no metadata.extensions.jupyter_dashboards.views at the
notebook-level, a renderer:

• Should process the document as if it defines a report view with all cells visible.

• May persist the implicit all-cells-visible report view to the document.

When processing cells that have no view ID corresponding to the current view being displayed, a display-only renderer
with no authoring capability should treat such cells as hidden. A renderer with layout authoring capability:

• Should make a best effort attempt at determining the properties for the cell in the view based on the content of
the cell.

– e.g., Set cell_view.hidden=false if the cell produces no output.

– e.g., Set cell_view.row, cell_view.col, cell_view.width, and cell_view.height to
values that do not overlap other cells in a grid layout.

• Should immediately persist such default values into the document to avoid inferring them again in the future.

• Must allow the user to override the computed default values.

JSON Schema

The following schema expresses the dashboard layout specification as additions to the existing notebook format v4
schema. The schema below omits any untouched portions of the notebook schema for brevity.

{
"$schema": "http://json-schema.org/draft-04/schema##",
"description": "IPython Notebook v4.0 JSON schema plus layouts.",
"properties": {

"metadata": {
"properties": {

"extensions": {
"description": "Notebook-level namespace for extensions",

6.4. JSON Schema 21

https://github.com/jupyter/nbformat/blob/master/nbformat/v4/nbformat.v4.schema.json
https://github.com/jupyter/nbformat/blob/master/nbformat/v4/nbformat.v4.schema.json

Dashboards Documentation, Release 0.6

"type": "object",
"additionalProperties": true,
"properties": {

"jupyter_dashboards": {
"description": "Namespace for jupyter_dashboards notebook metadata",
"type": "object",
"additionalProperties": true,
"properties": {

"version": {
"description": "Version of the metadata spec",
"type": "integer",
"minimum": 1,
"maximum": 1

},
"activeView": {

"description": "ID of the view that should render by default",
"type": "string"

},
"views": {

"description": "View definition",
"type": "object",
"additionalProperties": false,
"patternProperties": {

"^[a-zA-Z0-9_-]+$": {
"type": "object",
"oneOf": [{

"$ref": "##definitions / jupyter_dashboards / notebook_grid_view "
}, {

"$ref": "##definitions / jupyter_dashboards / notebook_report_view "
}]

}
}

}
}

}
}

}
}

}
},
"definitions": {

"raw_cell": {
"properties": {

"metadata": {
"properties": {

"extensions": {
"description": "Cell-level namespace for extensions",
"type": "object",
"additionalProperties": true,
"properties": {

"jupyter_dashboards": {"$ref": "##definitions/jupyter_dashboards/cell_view"}
}

}
}

}
}

},
"markdown_cell": {

22 Chapter 6. Dashboard metadata and rendering

Dashboards Documentation, Release 0.6

"properties": {
"metadata": {

"properties": {
"extensions": {

"description": "Cell-level namespace for extensions",
"type": "object",
"additionalProperties": true,
"properties": {

"jupyter_dashboards": {"$ref": "##definitions/jupyter_dashboards/cell_view"}
}

}
}

}
}

},
"code_cell": {

"properties": {
"metadata": {

"properties": {
"extensions": {

"description": "Cell-level namespace for extensions",
"type": "object",
"additionalProperties": true,
"properties": {

"jupyter_dashboards": {"$ref": "##definitions/jupyter_dashboards/cell_view"}
}

}
}

}
}

},
"jupyter_dashboards": {

"notebook_grid_view": {
"description": "Grid view definition",
"type": "object",
"additionalProperties": true,
"properties": {

"name": {
"description": "Human readable name of the view",
"type": "string"

},
"type": {

"description": "Grid view type",
"enum": ["grid"]

},
"cellMargin": {

"description": "Margin between cells in pixels",
"type": "integer",
"minimum": 0

},
"cellHeight": {

"description": "Height of a logical row in pixels",
"type": "integer",
"minimum": 0

},
"numColumns": {

"description": "Total number of logical columns",
"type": "integer",

6.4. JSON Schema 23

Dashboards Documentation, Release 0.6

"minimum": 1
}

}
},
"notebook_report_view": {

"description": "Report view definition",
"type": "object",
"additionalProperties": true,
"properties": {

"name": {
"description": "Human readable name of the view",
"type": "string"

},
"type": {

"description": "Report view type",
"enum": ["report"]

}
}

},
"cell_view": {

"description": "Namespace for jupyter_dashboards cell metadata",
"type": "object",
"additionalProperties": true,
"properties": {

"version": {
"description": "Version of the metadata spec",
"type": "integer",
"minimum": 1,
"maximum": 1

},
"views": {

"description": "Layout information for cell in view",
"type": "object",
"additionalProperties": false,
"patternProperties": {

"^[a-zA-Z0-9_-]+$": {
"type": "object",
"oneOf": [{

"$ref": "##definitions / jupyter_dashboards / cell_grid_view "
}, {

"$ref": "##definitions / jupyter_dashboards / cell_report_view "
}]

}
}

}
}

},
"cell_grid_view": {

"description": "Grid view metadata for a cell",
"type": "object",
"additionalProperties": true,
"properties": {

"hidden": {
"description": "True if cell is hidden in the view",
"type": "boolean"

},
"row": {

"description": "Logical grid row",

24 Chapter 6. Dashboard metadata and rendering

Dashboards Documentation, Release 0.6

"type": "integer",
"minimum": 0

},
"col": {

"description": "Logical grid column",
"type": "integer",
"minimum": 0

},
"width": {

"description": "Width in logical columns",
"type": "integer",
"minimum": 1

},
"height": {

"description": "Height in logical rows",
"type": "integer",
"minimum": 1

}
}

},
"cell_report_view": {

"description": "Report view metadata for a cell",
"type": "object",
"additionalProperties": true,
"properties": {

"hidden": {
"description": "True if cell is hidden in the view",
"type": "boolean"

}
}

}
}

}
}

6.4. JSON Schema 25

Dashboards Documentation, Release 0.6

26 Chapter 6. Dashboard metadata and rendering

CHAPTER 7

Summary of changes

See git log for a more detailed summary of changes.

0.7

0.7.0 (2017-04-04)

• Updated to support notebook 5.0

• Fixed clipping at cell boundaries

0.6

0.6.0 (2016-06-17)

• Switch to the v1 dashboard layout specification

• Automatically upgrade existing notebook metadata to the v1 spec

• Update example notebooks for compatibility with jupyter_declarativewidgets 0.6.0

• Remove urth moniker in favor of jupyter_dashboards for CSS classes, notebook metadata, etc.

• Fix gaps in grid when hiding cells

0.5

0.5.2 (2016-05-11)

• Fix report layout reset when switching between dashboard layout and preview

0.5.1 (2016-05-11)

• Hide errors from declarative widgets in dashboard layout and preview

• Fix the state of the show code checkbox in layout view when switching layout types

27

https://github.com/jupyter/dashboards/wiki/Dashboard-Metadata-and-Rendering

Dashboards Documentation, Release 0.6

• Fix history window slider widgetin the community outreach demo

• Fix missing imports in the declarative widgets scotch demo

• Fix copy/pasted cells receive the same layout metadata

• Fix lost cells in report layout after clear and refresh

• Fix layout toolbar button default state

0.5.0 (2016-04-26)

• Add report layout for simple top-to-bottom, full-width dashboards

• Add buttons to move a cell to the top, bottom, or notebook order in layout mode

• Make compatible with Jupyter Notebook 4.0.x to 4.2.x

• Fix bokeh example race condition

• Fix browser scrolling when dragging cells in layout view

0.4

0.4.2 (2016-02-18)

• Fix code cell overflow in layout mode

• Fix scroll bars that appear within cells of a certain size

• Fix hidden cells from being cut-off in layout mode

• Fix failure to load extension JS in certain situations

• Fix meetup streaming demo filter box

• Update to Gridstack 0.2.4 to remove a workaround

0.4.1 (2016-02-07)

• Fix gridstack break with lodash>=4.0

• Remove notebook 4.1 cell focus highlight in dashboard preview

• Hide stderr and errors in dashboard preview, send them to the browser console

0.4.0 (2016-01-21)

• Separate pip install from jupyter dashboards [install | activate | deactivate]

• Match the Python package to the distribution name, jupyter_dashboards

• Fix cell overlap when one cell has the minimum height

• Prevent stderr and exception messages from displaying in dashboard modes

• Update demo notebooks to stop using deprecated UrthData.setItem from declarative widgets.

28 Chapter 7. Summary of changes

Dashboards Documentation, Release 0.6

0.3

0.3.0 (2015-12-30)

• Make compatible with Jupyter Notebook 4.1.x

• Remove all download and deployment related backend code in. Refer users to the separate jupyter_cms and
jupyter_dashboards_bundlers packages for these features.

• Keep compatible with Jupyter Notebook 4.0.x

0.2

0.2.2 (2015-12-15)

• Revert to old jupyter_notebook_server.py config hack to remain compatible with jupyter_declarativewidgets and
jupyter_cms (until they change too)

0.2.1 (2015-12-15)

• Fix errors on install when profiles don’t exist

• Fix styling leaking out of dashboard mode

0.2.0 (2015-12-01)

• Default to showing code instead of blank cells in layout mode

• Add menu items for packed vs stacked cell layout

• Make compatible with Jupyter Notebook 4.0.x

• Make compatible with jupyter_declarativewidgets 0.2.x

• System tests using Selenium locally, SauceLabs via Travis

0.1

0.1.1 (2015-12-02)

• Backport of UX fixes from 0.2.0

• Keep compatible with IPython Notebook 3.2.x

• Keep compatible with declarative widgets 0.1.x

0.1.0 (2015-11-17)

• First PyPI release

• Compatible with IPython Notebook 3.2.x on Python 2.7 or Python 3.3+

7.5. 0.3 29

Dashboards Documentation, Release 0.6

30 Chapter 7. Summary of changes

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

31

	Getting started
	Prerequisites
	Installing and Enabling
	Disabling and Uninstalling
	Legacy Notes

	Creating dashboard layouts
	Understanding the use case
	Developer tasks
	Maintainer tasks
	Build a package
	Make a release

	Dashboard metadata and rendering
	Versioning
	Notebook Fields
	Rendering
	JSON Schema

	Summary of changes
	0.7
	0.6
	0.5
	0.4
	0.3
	0.2
	0.1

	Indices and tables

